Friday, July 15, 2016

In 2025, Onshore Wind and Large-Scale Solar Will Outperform Nuclear

According to the UK’s Department of Energy & Climate Change (DECC), the estimated future costs (in 2025) of onshore wind and large-scale solar power will be more competitive than that of nuclear power. As we can obviously notice, DECC's estimates for the same year were quite different just 3 or 6 years ago. It is good news for those countries who have to greatly increase the shares of low-carbon energy sources to satisfy the mitigation pledges manifested in their Intended Nationally Determined Contributions (INDCs; or now, their first Nationally Determined Contributions [NDCs]).

Note: If you want to know the current cost estimates of different energy technologies, please read my previous post (“Cost of Energy Comparison, Including Levelized Cost of Energy (LCOE) - 2016 Update” at http://j.mp/LCOE_2016).

Figure: Levelized cost of generating 1 MWh with different technologies in 2025: changes in DECC’s estimates



Source: National Audit Office. (2016). Nuclear Power in the UK. London, UK: National Audit Office. [Full-text at http://j.mp/2016_UK_LCOE]

$/£ Exchange Rate in 2014: 1 pound sterling = $1.6484 (Source: https://fred.stlouisfed.org/series/AEXUSUK)

Monday, January 18, 2016

Cost of Energy Comparison, Including Levelized Cost of Energy (LCOE) - 2016 Update


There must be numerous ways to compare cost of technologies for generation, storage and delivery of energy. The most widely used measure for this purpose has been Levelized Cost of Energy (LCOE). LCOE is also known as LEC (Levelized Energy Cost), LUEC (Levelized Unit Energy Cost), or busbar cost. LRMC (Long-Run Marginal Cost) is a similar but different measure, although it is often presented by LCOE due to LCOE’s characteristics being a proxy of LRMC.
I have been updating this list since April 2010. However, there are many critics of using LCOE as a means of comparing the economics of electricity generation technology options (The most notable summary of those criticism: Hirth, L., Ueckerdt, F., & Edenhofer, O. (2015). Integration costs revisited – An economic framework for wind and solar variability. Renewable Energy, 74, 925–939. [Full-text at http://dx.doi.org/10.1016/j.renene.2014.08.065]). In this new list for 2016, I tried to include a variety of cost comparison metrics, while continuing to provide extensive references for LCOE.

I. Cost of Every Power Technology


Alberici, S. et al. (2014). Subsidies and Costs of EU energy. (DESNL14583). Utrecht, The Netherlands: Ecofys. [Full-text at http://j.mp/EU-LCOE] | Component cost breakdown for each country at http://j.mp/EU-LCOE-Component]


The Australian Academy of Technological Sciences and Engineering. (2011). New Power Cost Comparisons: Levelised Cost of Electricity for a Range of New Power Generating Technologies. Melbourne, Australia: The Australian Academy of Technological Sciences and Engineering (ATSE) [Full-text at http://j.mp/l1Sk1j]

Bedilion, R. (2013). Program on Technology Innovation: Integrated Generation Technology Options 2012. Palo Alto, CA: Electric Power Research Institute (EPRI). [Full-text at http://j.mp/EPRI2012]

Black & Veatch. (2012). Cost and Performance Data for Power Generation Technologies: Prepared for the National Renewable Energy Laboratory. Overland Park, KS: Black & Veatch Corporation. [Full-text at http://j.mp/BV_LCOE]

Bloomberg New Energy Finance. (2013). Quarterly Clean Energy Policy & Market Briefings. New York, NY: Bloomberg New Energy Finance. [Full-text at http://j.mp/BNEF_Q]

Bloomberg New Energy Finance. (2016). Sustainable Energy in America: 2016 Factbook. New York, NY: Bloomberg Finance; Washington, DC: The Business Council for Sustainable Energy. [Full-text at http://j.mp/BNEF_LCOE_2016]

Bureau of Resources and Energy Economics (BREE). (2013). Australian Energy Technology Assessment (AETA) 2013 Model Update. Canberra, Australia: Bureau of Resources and Energy Economics (BREE). [Full-text at http://j.mp/AETA2013]

Channell, J., Jansen, H. R., Syme, A. R., Savvantidou, S., Morse, E. L., Yuen, A. (2013). Energy Darwinism: The Evolution of the Energy Industry. Citi GPS: Global Perspectives & Solutions. New York, NY: Citigroup. [Full-text at http://j.mp/Citi_LCOE]

Climatescope. (2015). Climatescope 2015: The Clean Energy Country Competitiveness Index. Multilateral Investment Fund (MIF), UK Department for International Development (DFID), Power Africa, & Bloomberg New Energy Finance (BNEF). [Full-text and data at http://j.mp/ClimateScope2015]

Committee on America’s Energy Future. (2009). Americas Energy Future: Technology and Transformation. Washington, DC: The National Academies Press. [Full-text at http://bit.ly/8ZsYVM]

Committee on Climate Change. (2015). Power Sector Scenarios for the Fifth Carbon Budget. London, UK: Committee on Climate Change. [Full-text at http://j.mp/UK_LCOE; Data at http://j.mp/UK_LCOE_XLS]

Danish Energy Agency. (2015). Levelized Cost of Energy Calculator. Copenhagen, Denmark: Danish Energy Agency. [Full-text at http://j.mp/LCOE_Calculator; Spreadsheet at http://j.mp/LCOE_Calculator_XLSM]

Department of Energy & Climate Change. (2013). Electricity Generation Costs (December 2013). London, UK: Department of Energy & Climate Change. [Full-text at http://j.mp/DECC_LCOE2013]

E3M-Lab. (2016). EU Reference Scenario 2016: Energy, transport and GHG emissions Trends to 2050. Brussels, Belgium: European Commission. [Full-text at http://j.mp/EU_Reference_LCOE]

Electric Power Research Institute. (2016). Australian Power Generation Technology Report. Melbourne, Australi: CO2CRC. [Full-text at http://j.mp/Australia_LCOE]

Electricity Generation Costs Verification Working Group (Japan). (2015). Electricity Generation Costs Verification Report for the Long-Term Energy Supply and Demand Outlook Subcommittee (長期エネルギー需給見通し小委員会に対する 発電コスト等の検証に関する報告). Tokyo, Japan: Agency for Natural Resources and Energy. [Full-text at http://j.mp/Japan_LCOE_2015]; Power plant specifications at http://j.mp/Japan_Specs_2015]

Energy and Environment Conference, & Electricity Generation Costs Verification Committee (Japan). (2011). Electricity Generation Costs Verification Report. Tokyo, Japan: National Policy Unit, Cabinet Secretariat. [Full-text at http://j.mp/Japan_LCOE; Summary chart at http://j.mp/Japan_LCOE_Summary; Excel spreadsheet at http://j.mp/Japan_LCOE_XLS]

European Commission. (2008). Commission staff working document accompanying the communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions - Second Strategic Energy Review : an EU energy security and solidarity action plan - Energy Sources, Production Costs and Performance of Technologies for Power Generation, Heating and Transport. SEC(2008) 2872. Brussels, Belgium: European Commission. [Full-text at http://j.mp/9BST2r]

Freese, B., Clemmer, S., Martinez, C., & Nogee, A. (2011). A Risky Proposition: The Financial Hazards of New Investments in Coal Plants. Cambridge, MA: Union of Concerned Scientists. [Full-text at: http://j.mp/Risky_Proposition; Appendix A (LCOE) at http://j.mp/UCS_LCOE]

Fürstenwerth, D. (2014). Calculator of Levelized Cost of Electricity for Power Generation Technologies. Berlin, Germany: Agora Energiewende. [Excel spreadsheet at http://j.mp/Agora_LCOE]

Google.org. (2011). The Impact of Clean Energy Innovation: Examining the Impact of Clean Energy Innovation on the United States Energy System and Economy. [Full-text at http://j.mp/Google_CEI]

Greenstone, M., & Looney, A. (2011). A Strategy for America’s Energy Future: Illuminating Energy’s Full Costs. Washington, DC: The Brookings Institution. [Full-text at http://j.mp/mqEXUQ]

Intergovernmental Panel on Climate Change. (2014). Working Group III Contribution to the IPCC Fifth Assessment Report, Climate Change 2014: Mitigation of Climate Change. Geneva, Switzerland: Intergovernmental Panel on Climate Change. [Full-text at http://mitigation2014.org (Find in Chapter 7: Energy Systems.)]

International Energy Agency. (2014). The Power of Transformation: Wind, Sun and the Economics of Flexible Power Systems. Paris, France: IEA Publications. [Full-text at http://dx.doi.org/10.1787/9789264208032-en]

International Energy Agency. (2015). Energy Technology Perspectives 2015: Mobilising Innovation to Accelerate Climate Action. Paris, IEA Publications. [Full-text at http://dx.doi.org/10.1787/20792603 | Executive Summary | Tracking Clean Energy Progress 2015]

International Energy Agency. (2016). Energy Technology Perspectives 2016: Towards Sustainable Urban Energy Systems. Paris, IEA Publications. [Full-text at http://dx.doi.org/10.1787/energy_tech-2016-en | Executive Summary | Tracking Clean Energy Progress 2016]

International Energy Agency, & Nuclear Energy Agency. (2010). Projected Costs of Generating Electricity - 2010 Edition. Paris, France: OECD Publications. [Full-text at http://j.mp/IEA2010LCOE

International Energy Agency, & Nuclear Energy Agency. (2015). Projected Costs of Generating Electricity - 2015 Edition. Paris, France: OECD Publications. [Full-text at http://dx.doi.org/10.1787/cost_electricity-2015-en; Corrigendum at http://j.mp/IEA2015LCOE_Corrigendum; Executive summary at http://j.mp/IEA2015LCOE_ES | Presentation slides at http://j.mp/IEA2015LCOE_PPT]

Irlam, L. (2015). The Costs of CCS and Other Low-Carbon Technologies in the United States: 2015 Update. Melbourne, Australia: Global Carbon Capture and Storage Institute. [Full-text at http://j.mp/CCS_Costs]

Joskow, P. L. (2011). Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies. EUI Working Paper RSCAS (Robert Schuman Centre for Advanced Studies), 2011/45. Fiesole, Italy: European University Institute. [Full-text at http://j.mp/Joskow_EUI]

Kaplan, S. (2008). Power Plants: Characteristics and Costs. CRS Report for Congress, RL34746. Washington, DC: Congressional Research Service. [Full-text at http://bit.ly/d7M0Ja]

Küchler, S., & Meyer, B. (2012). 
The full costs of power generation: A comparison of subsidies and societal cost of renewable and conventional energy sources. Hamburg, Germany: Greenpeace Energy eG; Berlin, Germany: Bundesverband WindEnergie (BWE; German Wind Energy Association). [Full-text at http://j.mp/Full_Costs]


Lazard Ltd. (2015). Lazard’s Levelized Cost of Energy Analysis—Version 9.0. New York, NY: Lazard Ltd. [Full-text at http://j.mp/Lazard_LCOE_ver9]

Liebreich, M., Zindler, E., Tringas, T., Gurung, A., & von Bismarck, M. (2011). Green Investing 2011: Reducing the Cost of Financing. Geneva, Switzerland: World Economic Forum. [Full-text at http://j.mp/BNEF_WEF_2011]

Matsuo, Y., Yamaguchi, Y., & Murakami, T. (2013). Historical Trends in Japans Long-Term Power Generation Costs by Source: Assessed by Using Corporate Financial Statements. Tokyo, Japan: The Institute of Energy Economics, Japan (IEEJ). [Full-text at http://j.mp/JP_Gen_Cost]


Mott MacDonald. (2011). Costs of low-carbon generation technologies. London, UK: Committee on Climate Change. [Full-text at http://j.mp/jhy39d]

National Renewable Energy Laboratory. (2013). Levelized Cost of Energy Calculator. Golden, CO: National Renewable Energy Laboratory. [Website at http://j.mp/LCOE_Calc]

National Renewable Energy Laboratory. (2013). Transparent Cost Database: Generation. Golden, CO: National Renewable Energy Laboratory. [Data at http://en.openei.org/apps/TCDB/]

Nitsch, J. et al. (2012). Langfristszenarien und Strategien für den Ausbau der Erneuerbaren Energien in Deutschland bei Berücksichtigung der Entwicklung in Europa und Global (Long-term scenarios and strategies for the deployment of renewable energies in Germany in view of European and global developments). Stuttgart, Berlin: Federal Ministry for the Environment, Nature Conservation and Nuclear Safety. [Full-text at http://j.mp/German_LCOE; Technical annex at http://j.mp/German_LCOE_Annex; Data at http://j.mp/German_LCOE_XLS]

Parsons Brinckerhoff. (2013). Electricity Generation Cost Model - 2013 Update of Non-Renewable Technologies. London, UK: Department for Energy and Climate Change. [Full-text at http://j.mp/UK_NonRE_LCOE]

Paul Scherrer Institut. (2010). Sustainable Electricity: Wishful thinking or near-term reality? Energie-Spiegel: Facts for the Energy Decisions of Tomorrow20. Villigen, Switzerland: Paul Scherrer Institut. [Full-text at http://gabe.web.psi.ch/pdfs/Energiespiegel_20e.pdf]

Pourreza, S. et al. (2014). Evolving Economics of Power and Alternative Energy. New York, NY: Citi Research. [Full-text at http://j.mp/Citi_LCOE_2014]

Pöyry. (2013). Technology Supply Curves for Low-Carbon Power Generation: A Report to the Committee on Climate Change. Oxford, UK: Pöyry Management Consulting. [Full-text at http://j.mp/LowCarbonLCOE]


Rhyne, I., Klein, J., & Neff, B. (2015). Estimated Cost of New Renewable and Fossil Generation in California. (CEC-200-2014-003-SF). Sacramento, CA: California Energy Commission. [Full-text at http://j.mp/CEC_LCOE]

Schröder, A., Kunz, F., Meiss, J., Mendelevitch, R., & von Hirschhausen, C. (2013). Current and prospective costs of electricity generation until 2050. (Data Documentation, No. 68). Berlin, Germany: Deutsches Institut für Wirtschaftsforschung (DIW Berlin; the German Institute for Economic Research). [Full-text at http://j.mp/DIW_LCOE]

Siemens Wind Power. (2014). SCOE – Society’s costs of electricity: How society should find its optimal energy mix. Erlangen, Germany: Siemens AG. [Full-text at http://j.mp/Siemens_SCOE]

Stacy, T. F., & Taylor, G. S. (2016). The Levelized Cost of Electricity from Existing Generation Resources. Washington, DC: Institute for Energy Research. [Full-text at http://j.mp/IER_LCOE]

Sullivan, P. et al. (2015). 2015 Standard Scenarios Annual Report: U.S. Electric Sector Scenario Exploration. Golden, CO: National Renewable Energy Laboratory. [Website for the "Annual Technology Baseline (ATB) and Standard Scenarios" http://j.mp/ATB_NREL; Full-text at http://j.mp/ATB_2015; Excel spreadsheet at http://j.mp/ATB_XLS]

U.S. Department of Energy. (2015). Quadrennial Technology Review: An Assessment of Energy Technologies and Research Opportunities. Washington, DC: U.S. Department of Energy. [Full-text at http://j.mp/QTR_2015]

U.S. Energy Information Administration. (2016). Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2016. Washington, DC: U.S. Energy Information Administration. [Full-text at http://j.mp/AEO2016_LCOE]

Veiga, M. M., Álvarez, P. F., Moraleda, M. F.-M., & Kleinsorge, A. (2013). Study on Cost and Business Comparison of Renewable vs. Non-renewable Technologies (RE-COST). Utrecht, The Netherlands: IEA - Renewable Energy Technology Deployment (RETD). [Full-text at http://j.mp/RE-COST]

World Energy Council, & Bloomberg New Energy Finance. (2013). World Energy Perspective: Cost of Energy Technologies. London, UK: World Energy Council. [Full-text at http://j.mp/WEC_LCOE]

II. Cost of Renewable Power

II-1. Renewable Power Cost Comparison


Artelys, Armines, & Energies Demain. (2016). A 100% Renewable Electricity Mix? Analysis and Optimisation: Exploring the Boundaries of Renewable Power generation in France by 2050. Paris, France: Agence de l’environnement et de la maîtrise de l’énergie (ADEME; French Environment and Energy Management Agency). [Full-text at http://j.mp/France_LCOE]

Black & Veatch Corporation. (2010). Renewable Energy Transmission Initiative Phase 2B: Final Report. Sacramento, CA: RETI Stakeholder Steering Committee. [Full-text at http://j.mp/8ZbLPl]

De Jager, D. et al. (2011). Financing Renewable Energy in the European Energy Market. (PECPNL084659). Brussels, Belgium: European Commission. [Full-text at http://j.mp/EU_RE_LCOE]

E3: Energy + Environmental Economics. (2015). CPUC RPS Calculator. San Francisco, CA: California Public Utilities Commission (CPUC). [XLSM spreadsheet at http://j.mp/CPUC_RPS_LCOE]

Frankfurt School-UNEP Centre, & BNEF. (2016). Global Trends in Renewable Energy Investment 2016. Frankfurt, Germany: Frankfurt School of Finance & Management. [Full-text at http://j.mp/RE_Investment_2016]

Hearps, P., & McConnell, D. (2011). Renewable Energy Technology Cost Review. Melbourne, Australia: Melbourne Energy Institute. [Full-text at http://j.mp/iYoa6E]

IEA-ETSAP, & IRENA. (2013). Technology Briefs (of 10 Renewable Energy Technologies). Abu Dhabi, United Arab Emirates: International Renewable Energy Agency. [Full-text at http://j.mp/ETSAP_IRENA]


Intergovernmental Panel on Climate Change. (2012). IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Cambridge, UK and New York, NY, USA: Cambridge University Press. [Full-text at http://j.mp/SRREN]

International Energy Agency. (2015). Medium-Term Renewable Energy Market Report 2015: Market Analysis and Forecasts to 2020. Paris, France: IEA Publications. [Full-text at http://dx.doi.org/10.1787/renewmar-2015-en]

International Renewable Energy Agency. (2012). Renewable Energy Technologies: Cost Analysis Series - Volume 1: Power Sector. Abu Dhabi, UAE: IRENA Secretariat. [Full-text: http://j.mp/IRENA_Windhttp://j.mp/IRENA_PVhttp://j.mp/IRENA_Hydrohttp://j.mp/IRENA_CSPhttp://j.mp/IRENA_Biomass]

International Renewable Energy Agency. (2014). REmap 2030: A Renewable Energy Roadmap, June 2014. Abu Dhabi, UAE: IRENA Secretariat. [Full-text at http://j.mp/REmap2030]

International Renewable Energy Agency. (2015). Renewable Power Generation Costs in 2014. Abu Dhabi, UAE: IRENA Secretariat. [Full-text at http://j.mp/IRENA_LCOE_2014]

International Renewable Energy Agency. (2016). The Power to Change: Solar and Wind Cost Reduction Potential to 2025. Abu Dhabi, UAE: IRENA Secretariat. [Full-text at http://j.mp/Solar_Wind]

Jacobson, M. Z. et al. (2015). 100% clean and renewable wind, water, and sunlight (WWS) all-sector energy roadmaps for the 50 United States. Energy & Environmental Science. doi: 10.1039/C5EE01283J [Full-text and data at http://web.stanford.edu/group/efmh/jacobson/Articles/I/WWS-50-USState-plans.html]

Kost, C. et al. (2013). Levelized Cost of Electricity – Renewable Energy Technologies. Freiburg, Germany: Fraunhofer Institute for Solar Energy Systems ISE. [Full-text at http://j.mp/Fraunhofer_LCOE]

Ove Arup & Partners Ltd. (2011). Review of the generation costs and deployment potential of renewable electricity technologies in the UK. London, UK: Department of Energy and Climate Change. [Full-text ahttp://j.mp/UK_Renewable_LCOE]

REN21. (2016). Renewables 2016 Global Status Report. Paris, France: REN21 Secretariat. [Full-text at http://j.mp/RE2016GSR]

Sustainable Energy Advantage, LLC. (2011). Cost of Renewable Energy Spreadsheet Tool (CREST). Golden, CO: National Renewable Energy Laboratory. [Excel files at http://j.mp/CREST_LCOE]

Syed, A. et al. (2014). Asia Pacific Renewable Energy Assessment. Canberra, Australia: Bureau of Resources and Energy Economics (BREE). [Full-text at http://j.mp/Asia-Pacific_RE_LCOE]

II-2. Biomass Power

LCICG. (2012). Technology Innovation Needs Assessment (TINA): Bioenergy - Summary Report. Low Carbon Innovation Co-ordination Group (LCICG). [Full-text at http://j.mp/LCICG_Bioenergy]

II-3. Geothermal Power

Limberger, J. et al. (2014). Assessing the prospective resource base for enhanced geothermal systems in Europe. Geothermal Energy Science2. 55-71. [Full-text at http://dx.doi.org/10.5194/gtes-2-55-2014]

National Energy Technology Laboratory. (2012). Role of Alternative Energy Sources: Geothermal Technology Assessment (NETL/DOE-2011/1531). Pittsburgh, PA: National Energy Technology Laboratory. [Full-text at http://j.mp/NETL_Geothermal]

II-4. Hydro Power

European Small Hydropower Association. (2012). Small Hydropower Roadmap: Condensed research data for EU-27. Brussels, Belgium: European Small Hydropower Association. [Full-text at http://j.mp/Small_Hydro_LCOE; Data at http://streammap.esha.be/19.0.html]

National Energy Technology Laboratory. (2012). Role of Alternative Energy Sources: Hydropower Technology Assessment (NETL/DOE-2011/1519). Pittsburgh, PA: National Energy Technology Laboratory. [Full-text at http://j.mp/NETL_Hydro]

II-5. Marine (Wave, Tide) Energy Power

Badcock-Broe, A. et al. (2014). Wave and Tidal Energy Market Deployment Strategy for Europe. Brussels, Belgium: Strategic Initiative for Ocean Energy (SI OCEAN). [Full-text at http://j.mp/Wave_Tide_LCOE]

Carbon Trust, University of Edinburgh, & JRC. (2013). Ocean Energy: Cost of Energy and Cost Reduction Opportunities. Brüssels, Belgium: Strategic Initiative for Ocean Energy (SI OCEAN). [Full-text at http://j.mp/Ocean_LCOE]

Commission Staff. (2014). Impact Assessment: Accompanying the document Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions - Ocean Energy: Action needed to deliver on the potential of ocean energy by 2020 and beyond. (SWD(2014) 13 final). Brussels, Belgium: European Commission. [Full-text at http://j.mp/OceanE_LCOE]

LCICG. (2012). Technology Innovation Needs Assessment (TINA): Marine Energy - Summary Report. Low Carbon Innovation Co-ordination Group (LCICG). [Full-text at http://j.mp/LCICG_Marine]

Magagna, D., & Uihlein, A. (2015). 2014 JRC Ocean Energy Status Report: Technology, market and economic aspects of ocean energy in Europe. Petten, The Netherlands: Joint Research Centre, European Commission. [Full-text at http://j.mp/EU_Ocean_LCOE]

Neary, V. S. et al. (2014). Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. Albuquerque, NM: Sandia National Laboratories. [Full-text at http://j.mp/Marine_LCOE]

II-6. Solar Photovoltaic/Thermal Power

Baker, E., Fowlie, M., Lemoine, D., & Reynolds, S. S. (2013). The Economics of Solar Electricity. Annual Review of Resource Economics5, 387-426. [Full-text at http://dx.doi.org/10.1146/annurev-resource-091912-151843]

Barbose, G. L., & Darghouth, N. R. (2016). Tracking the Sun IX: The Installed Price of Residential and Non-Residential Photovoltaic Systems in the United States. Berkeley, CA: Lawrence Berkeley National Laboratory. [Full-text at http://j.mp/US_PV_LCOE_2016; Excel spreadsheet at http://j.mp/US_PV_2016_XLS]

Bolinger, M., & Seel, J. (2016). Utility-Scale Solar 2015: An Empirical Analysis of Project Cost, Performance, and Pricing Trends in the United States. Berkeley, CA: Lawrence Berkeley National Laboratory. [Full-text at http://j.mp/US_Solar_LCOE_2016 | Excel spreadsheet at http://j.mp/US_Solar_LCOE_XLSX]

Breyer, C., & Gerlach, A. (2013). Global overview on grid-parity. Progress in Photovoltaics: Research and Applications21(1), 121-136. [Full-text at http://dx.doi.org/10.1002/pip.1254]

Briano, J. I., Báez, M. J., & Morales, R. M. (2015). PV Grid Parity Monitor. Madrid, Spain: Creara. [Full-text at http://j.mp/PV_GridParity]

Bronski, P., Creyts, J., Crowdis, M., Doig, S., Glassmire, J., Guccione, L, Lilienthal, P., Mandel, J., Rader, B., Seif, D., Tocco, H., & Touati, H. (2015). The Economics of Load Defection: How Grid-Connected Solar-Plus-Battery Systems Will Compete with Traditional Electric Service, Why It Matters, and Possible Paths Forward. Boulder, CO: Rocky Mountain Institute. [Full-text at http://j.mp/Solar_Battery_Cost]

Darling, S. B., You, F., Veselka, T., & Velosa, A. (2011). Assumptions and the levelized cost of energy for photovoltaics. Energy & Environmental Science4, 3133-3139. [Full-text at http://dx.doi.org/10.1039/c0ee00698j]

Denholm, P., O’Connell, M., Brinkman, G., & Jorgenson, J. (2015). Overgeneration from Solar Energy in California: A Field Guide to the Duck Chart. (NREL/TP-6A20-65023). Golden, CO: National Renewable Energy Laboratory. [Full-text at http://j.mp/CA_PV_LCOE]

Fraunhofer Institute for Solar Energy Systems ISE. (2015). Current and Future Cost of Photovoltaics. Long-term Scenarios for Market Development, System Prices and LCOE of Utility-Scale PV Systems. Berlin, Germany: Agora Energiewende. [Full-text at http://j.mp/PV_LCOE]

IEA PVPS. (2015). Trends 2015 in Photovoltaic Applications: Survey Report of Selected IEA Countries between 1992 and 2014. (IEA-PVPS T1-27:2015). St. Ursen, Switzerland: IEA Photovoltaic Power System Programme. [Full-text at http://j.mp/PVPS2015]

Jones-Albertus, R., Feldman, D., Fu, R., Horowitz, K., & Woodhouse, M. (2015). Technology Advances Needed for Photovoltaics to Achieve Widespread Grid Price Parity. Washington, DC: Department of Energy. [Full-text at http://j.mp/PV_Grid_Parity]

Mendelsohn, M., Kreycik, C., Bird, L., Schwabe, P., & Cory, K. (2012). The Impact of Financial Structure on the Cost of Solar Energy. (NREL/TP-6A20-53086). [Full-text at http://www.nrel.gov/docs/fy12osti/53086.pdf]

National Energy Technology Laboratory. (2012). Role of Alternative Energy Sources: Solar Thermal Technology Assessment (NETL/DOE-2012/1532). Pittsburgh, PA: National Energy Technology Laboratory. [Full-text at http://j.mp/NETL_Solar]

National Renewable Energy Laboratory (NREL). (2012). SunShot Vision Study. (DOE/GO-102012-3037). Washington, DC: U.S. Department of Energy. [Full-text at http://www1.eere.energy.gov/solar/pdfs/47927.pdf]

Philipps, S. P., Kost, C., & Schlegl, T. (2014). Up-to-Date Levelised Cost of Electricity of Photovoltaics: Background from Fraunhofer ISE Relating to IPCC WGIII 5th Assessment Report, Final Draft, September 2014. Freiburg, Germany: Fraunhofer Institute for Solar Energy Systems ISE (Institut für Solare Energiesysteme). [Full-text at http://j.mp/LCOE_PV]

Reichelstein, S., & Yorston, M. (2012). Solar-LCOE Calculator. [Excel spreadsheet at http://j.mp/Reichelstein_LCOE; Developed for the following paper: Reichelstein, S., & Yorston, M. (2013). The prospects for cost competitive solar PV power. Energy Policy55, 117-127. [Full-text at http://dx.doi.org/10.1016/j.enpol.2012.11.003]

Rutovitz, J. et al. (2014). Breaking the solar gridlock: Potential benefits of installing concentrating solar thermal power at constrained locations in the NEM. Sydney, Australia: Institute for Sustainable Futures, UTS (University of Technology, Sydney). [Full-text at http://j.mp/CSP_LCOE_AU]

Schmalensee, R. et al. (2015). The Future of Solar Energy: An Interdisciplinary MIT Study. Cambridge, MA: Massachusetts Institute of Technology. [Full-text at http://j.mp/MIT_Solar_LCOE]

Shah, V., & Booream-Phelps, J. (2015). Crossing the Chasm: Solar Grid Parity in a Low Oil Price Era. New York, NY: Deutsche Bank Securities Inc. [Full-text at http://j.mp/Solar_Grid_Parity]

Stadelmann, M., Frisari, G., Boyd, R., & Feás, J. (2014). The Role of Public Finance in CSP: Background and Approach to Measure its Effectiveness. San Francisco, CA: Climate Policy Initiative. [Full-text at http://j.mp/CSP_LCOE]

SunPower Corporation. (2011). Grid-Competitive Residential and Commercial Fully Automated PV Systems Technology. (DE-FC136-07GO17043). Washington, DC: U.S. Department of Energy. [Full-text at http://j.mp/SunPower_LCOE]

Tsuchida, B. et al. (2015). Comparative Generation Costs of Utility-Scale and Residential-Scale PV in Xcel Energy Colorado’s Service Area. Cambridge, MA: The Brattle Group. [Full-text at http://j.mp/PV_PV_LCOE]

Vartiainen, E., Masson, G., & Breyer, C. (2015). PV LCOE in Europe 2014–30. München, Germany: Secretariat of the European Photovoltaic Technology Platform. [Full-text at http://j.mp/PV_LCOE_EU]

Wirth, H. (2015). Recent Facts about Photovoltaics in Germany. Freiburg, Germany: Fraunhofer ISE. [Full-text at http://j.mp/GermanPV_LCOE]

II-7. Wind Power

Lacal Arántegui, R., & Serrano González, J. (2015). 2014 JRC Wind Status Report: Technology, Market and Economic Aspects of Wind Energy in Europe. Luxembourg: Publications Office of the European Union. [Full-text at http://j.mp/Wind_LCOE]

LCICG. (2012). Technology Innovation Needs Assessment (TINA): Offshore Wind Power - Summary Report. Low Carbon Innovation Co-ordination Group (LCICG). [Full-text at http://j.mp/LCICG_Wind]

Moné, C. et al. (2015). 2013 Cost of Wind Energy Review. (NREL/TP-5000-63267). Golden, CO: National Renewable Energy Laboratory. [Full-text at http://j.mp/Wind_LCOE_2013]

National Energy Technology Laboratory. (2012). Role of Alternative Energy Sources: Wind Technology Assessment (NETL/DOE-2012/1536). Pittsburgh, PA: National Energy Technology Laboratory. [Full-text at http://j.mp/NETL_Wind]

Offshore Renewable Energy (ORE) Catapult. (2015). Cost Reduction Monitoring Framework: Summary Report to the Offshore Wind Programme Board. London, UK: Offshore Wind Programme Board, the Crown Estate. [Full-text at http://j.mp/UK_Offshore_LCOE; Qualitative summary (by DNV GL) at http://j.mp/UK_Offshore_Qualitative; Quantitative summary (by Deloitte) at
http://j.mp/UK_Offshore_Quantitative]

Smith, A., Stehly, T., & Musial, W. (2015). 2014–2015 Offshore Wind Technologies Market Report. (NREL/TP-5000-64283). Golden, CO: National Renewable Energy Laboratory. [Full-text at http://j.mp/2015_Offshore_Wind; Excel spreadsheet at http://j.mp/Offshore_Wind_Data]

Tegen, S., Lantz, E.,Hand, M., Maples, B.,Smith, A., & Schwabe, P. (2013). 2011 Cost of Wind Energy Review. (NREL/TP-5000-56266). Golden, CO: National Renewable Energy Laboratory.
[Full-text at http://www.nrel.gov/docs/fy13osti/56266.pdf]

Vitina, A. et al. (2015). IEA Wind Task 26: Wind Technology, Cost, and Performance Trends in Denmark, Germany, Ireland, Norway, the European Union, and the United States: 2007–2012. (NREL/TP-6A20-64332). Golden, CO: National Renewable Energy Laboratory. [Full-text at http://j.mp/IEA_Wind_LCOE]

Willow, C., & Valpy, B. (2015). Approaches to Cost-Reduction in Offshore Wind: A Report for the Committee on Climate Change. Swindon, UK: BVG Associates. [Full-text at http://j.mp/Offshore_Wind_LCOE]

Wiser, R., & Bolinger, M. (2016). 2015 Wind Technologies Market Report. (DOE/GO-10216-4885). Washington, DC: U.S. Department of Energy. [Full-text at http://j.mp/US_Wind_2016; Excel spreadsheet at http://j.mp/US_Wind_2016_XLS]

Wiser, R. et al. (2015). Wind Vision: A New Era for Wind Power in the United States. (DOE/GO-102015-4557). Oak Ridge, TN: U.S. Department of Energy. [Full-text at http://j.mp/Wind_Vision | Scenario Viewer]

Wiser, R. et al. (2016). Forecasting Wind Energy Costs and Cost Drivers: The Views of the World’s Leading Experts. (LBNL- 1005717). Berkeley, CA: Ernest Orlando Lawrence Berkeley National Laboratory. [Full-text at http://j.mp/Wind_Cost]

III. Cost of Fossil Energy Power

III-1. Fossil Power Cost Comparison

Finkenrath, M. (2011). Cost and Performance of Carbon Dioxide Capture from Power Generation. IEA Energy PapersN° 2011/05. [Full-text at http://dx.doi.org/10.1787/5kgggn8wk05l-en]

Fout, T. et al. (2015). Cost and Performance Baseline for Fossil Energy Plants. Volume 1a: Bituminous Coal (PC) and Natural Gas to Electricity - Revision 3.
Pittsburgh, PA: National Energy Technology Laboratory. [Full-text at http://j.mp/PC_NGCC_COE]

International Energy Agency. (2013). Technology Roadmap: Carbon Capture and Storage. Paris, France: IEA Publications. [Full-text at http://j.mp/IEA_CCS_LCOE]

National Energy Technology Laboratory. (2010). Life Cycle Analysis: Power Studies Compilation Report (DOE/NETL-2010/1419). Pittsburgh, PA: National Energy Technology Laboratory. [Full-text at http://j.mp/laPsP6]

Pöyry Management Consulting, & Element Energy. (2015). Potential CCS Cost Reduction Mechanisms. London, UK: Committee on Climate Change. [Full-text at http://j.mp/CCS_LCOE_UK]

UK Carbon Capture and Storage Cost Reduction Task Force. (2013). CCS Cost Reduction Taskforce: Final Report. London, UK: Department of Energy & Climate Change. [Full-text at http://j.mp/UK_CCS_LCOE]

WorleyParsons, & Schlumberger. (2011). Economic Assessment of Carbon Capture and Storage Technologies: 2011 Update. Canberra, Australia: The Global CCS Institute. [Full-text at http://j.mp/CCS_LCOE]

III-2. Coal Power

Epstein, P. R., Buonocore, J. J., Eckerle, K., Hendryx, M., Stout III, B. M., Heinberg, R., Clapp, R. W., May, B., Reinhart, N. L., Ahern, M. M., Doshi, S. K., & Glustrom, L. (2011). Full cost accounting for the life cycle of coal. Annals of the New York Academy of Sciences1219, 73-98. [Full-text at http://dx.doi.org/10.1111/j.1749-6632.2010.05890.x]

IEAGHG. (2014). CO2 Capture at Coal Based Power and Hydrogen Plants. Cheltenham, UK: IEA Greenhouse Gas R&D Programme (IEAGHG). [Full-text at http://j.mp/IEAGHG_LCOE]

Lako, P. (2010). Coal-Fired Power. Technology Brief, E01. Paris, France: International Energy Agency. [Full-text at http://j.mp/ETSAP_Coal_LCOE]

National Energy Technology Laboratory. (2012). Role of Alternative Energy Sources: Pulverized Coal and Biomass Co-firing Technology Assessment (NETL/DOE-2012/1537). Pittsburgh, PA: National Energy Technology Laboratory. [Full-text at http://j.mp/Cofiring]

National Energy Technology Laboratory. (2012). Updated Costs (June 2011 Basis) for Selected Bituminous Baseline Cases (NETL/DOE-341/082312). Pittsburgh, PA: National Energy Technology Laboratory. [Full-text at http://j.mp/Bituminous]

III-3. Natural Gas Power

National Energy Technology Laboratory. (2012). Role of Alternative Energy Sources: Natural Gas Technology Assessment (NETL/DOE-2012/1539). Pittsburgh, PA: National Energy Technology Laboratory. [Full-text at http://j.mp/NG_Power]

Seebregts, A. J. (2010). Gas-Fired Power. Technology Brief, E02. Paris, France: International Energy Agency. [Full-text at http://j.mp/ETSAP_Gas_LCOE

IV. Cost of Nuclear Power


Congressional Budget Office. (2008). Nuclear Power’s Role in Generating Electricity. Washington, DC: Congressional Budget Office. [Full-text at http://j.mp/CBO_Atom]

Cour des comptes. (2012). The Costs of the Nuclear Power Sector: Thematic Public Report. Paris, France: Cour des comptes (Court of Audit). [Full-text at http://j.mp/FR_Atom_Costs]

De Roo, G., & Parsons, J. E. (2011). A methodology for calculating the levelized cost of electricity in nuclear power systems with fuel recycling. Energy Economics33(5), 826-839. doi: 10.1016/j.eneco.2011.01.008. [Full-text at http://web.mit.edu/ceepr/www/publications/reprints/Reprint_233_WC.pdf]

Deutch, J. M., Forsberg, C. W., Kadak, A. C., Kazimi, M. S., Moniz, E. J., Parsons, J. E., Yangbo, D., & Pierpoint, L. (2009).Update of the MIT 2003 Future of Nuclear Power Study. Cambridge, MA: Massachusetts Institute of Technology. [Full-text at http://j.mp/MIT_Atom_LCOE] 

DGA Consulting, & Carisway. (2016). Quantitative Viability Analysis of Electricity Generation from Nuclear Fuels. Adelaide, Australia: Nuclear Fuel Cycle Royal Commission. [Full-text at http://j.mp/Australia_Atom_LCOE]

D’haeseleer, W. D. (2013). Synthesis on the Economics of Nuclear Energy. (ENER/2012/NUCL/SI2.643067). Brussels, Belgium: Directorate-General for Energy (DG Enery), European Commission. [Full-text at 
http://j.mp/ENER_Atom]

Harris, G., Heptonstall, P., Gross, R., & Handley, D. (2012). Cost Estimates for Nuclear Power in the UK. (ICEPT/WP/2012/014). London, UK: Imperial College Centre for Energy Policy and Technology (ICEPT). [Full-text at http://j.mp/UK_Atom_LCOE]

Hogue, M. T. (2012). A Review of the Costs of Nuclear Power Generation. Salt Lake City, UT: Bureau of Economic and Business Research, University of Utah. [Full-text at http://j.mp/Atom_LCOE_Utah]

International Atomic Energy Agency. (2014). Climate Change and Nuclear Power 2014. Vienna, Austria: International Atomic Energy Agency. [Full-text at 
http://j.mp/CC_Atom]

LCICG. (2013). Technology Innovation Needs Assessment (TINA): Nuclear Fission - Summary Report. Low Carbon Innovation Co-ordination Group (LCICG). [Full-text at 
http://j.mp/LCICG_Atom]

Lecomte, M., Mario, N., & Vignon, D. (2014). A Worldwide Review of the Cost of Nuclear Power. Courbevoie, France: NucAdvisor. [Full-text at http://j.mp/NucAdvisor_LCOE]

National Audit Office. (2016). Nuclear Power in the UK. London, UK: National Audit Office. [Full-text at http://j.mp/2016_UK_LCOE]

National Energy Technology Laboratory. (2012). Role of Alternative Energy Sources: Nuclear Technology Assessment (NETL/DOE-2011/1502). Pittsburgh, PA: National Energy Technology Laboratory. [Full-text at http://j.mp/NETL_Atom]

Nuclear Energy Agency. (2011). Current Status, Technical Feasibility and Economics of Small Nuclear Reactors. Paris, France: OECD/NEA Publishing. [Full-text at http://j.mp/SMR_LUEC]

Nuclear Energy Agency. (2012). The Economics of Long-term Operation of Nuclear Power Plants. Paris, France: OECD/NEA Publishing. [Full-text at http://j.mp/NEA_LCOE]

Nuclear Energy Agency. (2015). Nuclear New Build: Insights into Financing and Project Management. Paris, France: OECD/NEA Publishing. [Full-text at http://j.mp/Atom_New_LCOE]

Nuclear Energy Institute. (2012). The Cost of New Generating Capacity in Perspective. Washington, DC: Nuclear Energy Institute. [Full-text at http://j.mp/NEI_Atom_LCOE]

Rosner, R., Klavans, J., & Olofin, S. (2015). Nuclear Fuel Cycle Cost Calculator. Chicago, IL: Bulletin of the Atomic Scientists. [Full-text and data at http://j.mp/Atom_LCOE]

Severance, C. A. (2009). Business Risks and Costs of New Nuclear Power. Washington, DC: Center for American Progress. [Full-text at http://j.mp/CAP_Atom_LCOE]

Simbolotti, G. (2010). Nuclear Power. Technology Brief, E03. Paris, France: International Energy Agency. [Full-text at 
http://j.mp/ETSAP_Atom_LCOE]

Thomas, S. (2013). The Economics of Nuclear Power. Wien, Austria: Evaluation einer Hypothetischen "NUklearen Renaissance" (EHNUR). [Full-text at 
http://j.mp/EHNUR_Atom]

WSP and Parsons Brinckerhoff. (2016). Quantitative Analysis and Initial Business Case - Establishing a Nuclear Power Plant and Systems in South Australia.  Adelaide, Australia: Nuclear Fuel Cycle Royal Commission. [Full-text at http://j.mp/SA_Atom_LCOE]

V. Cost of Hydrogen-Carried Energy

Hinkley, J. et al. (2016). Cost Assessment of Hydrogen Production from PV and Electrolysis.  Canberra, Australia: Commonwealth Scientific and Industrial Research Organisation (CSIRO). [Full-text at http://j.mp/H2_PV]

International Energy Agency. (2015). Technology Roadmap: Hydrogen and Fuel Cells. Paris, France: IEA Publications. [Full-text at http://j.mp/H2_LCOE]

VI. Cost of Energy Storage

AECOM Australia. (2015). Energy  Storage  Study: A Storage  Market Review and Recommendations  for Funding and Knowledge Sharing Priorities. Canberra, Australia: Australian Renewable Energy Agency (ARENA). [Full-text at http://j.mp/ESS_LCOE]

Akhil, A. A. et al. (2015). DOE/EPRI Electricity Storage Handbook in Collaboration with NRECA. (SAND2015-1002). Albuquerque, NM: Sandia National Laboratories. [Full-text at http://j.mp/ES_LCOE_2015]

Carnegie, R., Gotham, D., Nderitu, D., & Preckel, P. V. (2013). Utility Scale Energy Storage Systems: Benefits, Applications, and Technologies. West Lafayette, IN: State Utility Forecasting Group. [Full-text at http://j.mp/Utility_ESS]

Gardner, P., Jones, F., Rowe, M., Nouri, A., & van de Vegte, H. (2016). E-Storage: Shifting from Cost to Value, Wind and Solar Applications. London, UK: World Energy Council. [Full-text at http://j.mp/WEC_LCOS]

International Energy Agency. (2014). Technology Roadmap: Energy Storage. Paris, Frace: IEA Publications. [Full-text at http://j.mp/IEA_ES_LCOE; Technology annex at http://j.mp/IEA_ES_Annex]

International Renewable Energy Agency. (2012). Electricity Storage and Renewables for Island Power: A Guide for Decision Makers. Abu Dhabi, United Arab Emirates: International Renewable Energy Agency. [Full-text at http://j.mp/ESS_IRENA]

International Renewable Energy Agency. (2015). Battery Storage for Renewables: Market Status and Technology Outlook. Abu Dhabi, United Arab Emirates: International Renewable Energy Agency. [Full-text at http://j.mp/IRENA_Battery]

Joint Research Centre. (2011). 2011 Technology Map of the European Strategic Energy Technology Plan (SET-Plan): Technology Descriptions. Luxembourg: Publications Office of the European Union. [Full-text at http://j.mp/JRC_ESS]

Lazard Ltd. (2015). Lazards Levelized Cost of Storage Analysis—Version 1.0. New York, NY: Lazard Ltd. [Full-text at http://j.mp/Lazard_LCOS]

Nykvist, B. & Nilsson, M. (2015). Rapidly falling costs of battery packs for electric vehicles. Nature Climate Change, 5, 329–332. [Full-text at http://dx.doi.org/10.1038/nclimate2564; Data at http://j.mp/BEV_LCOE]

Rastler, D. (2010). Electricity Energy Storage Technology Options: A White Paper Primer on Applications, Costs, and Benefits. Palo Alto, CA: Electric Power Research Institute. [Full-text at http://j.mp/EPRI_ESS]

VII. Cost (LCOE or LCCE [Levelized Cost of Conserved Energy]) of Energy Efficiency or Demand Response Programs

Alstone, P. et al. (2016). 2015 California Demand Response Potential Study: Charting California’s Demand Response Future – Interim Report on Phase 1 Results. Berkeley, CA: Ernest Orlando Lawrence Berkeley National Laboratory. [Full-text at http://j.mp/LC_DR_California]

Billingsley, M. A. et al. (2014). The Program Administrator Cost of Saved Energy for Utility Customer-Funded Energy Efficiency Programs. (DE-AC02-05CH11231). Berkeley, CA: Ernest Orlando Lawrence Berkeley National Laboratory. [Full-text at http://j.mp/LBNL_LCSE]

Hoffman, I. M., et al. (2015). The Total Cost of Saving Electricity through Utility Customer-Funded Energy Efficiency Programs: Estimates at the National, State, Sector and Program Level. Berkeley, CA: Lawrence Berkeley National Laboratory. [Full-text at http://j.mp/Saved_Electricity]

Hornby, R. et al. (2015). Avoided Energy Supply Costs in New England: 2015 Report. Boston, MA: Massachusetts Energy Efficiency Advisory Council (EEAC). [Full-text at http://j.mp/New_England_Avoided_Cost]

Molina, M. (2014). The Best Value for America’s Energy Dollar: A National Review of the Cost of Utility Energy Efficiency Programs. Washington, DC: American Council for an Energy-Efficient Economy (ACEEE). [Full-text at http://j.mp/ACEEE_LCOE]

U.S. Environmental Protection Agency. (2015). Demand-Side Energy Efficiency Technical Support Document. Research Triangle Park, NC: U.S. Environmental Protection Agency. [Full-text at http://j.mp/LCSE_EE]

Tuesday, December 1, 2015

Suicide Rates in Old Age: An International Comparison

I have compared elderly suicide rates among 34 countries. As we can easily observe from the figure below, South Korea’s elderly suicide rates are a big problem in the country.
In Korea, among 100,000 people who are 75 years old and over, 109 people committed suicide in 2009. The second-highest suicide rate in this comparison (42/100,000 in Hungary) is less than half of the tragic number.


Source: WHO (2014)
Note: All data (‘number of deaths’ and ‘age group population’) are from 2009, except Canada (2005) and United States of America (2007).


South Korea’s high suicide rates among elders might be partially caused by their poverty. Among OECD countries, South Korean elders suffer the most from destitution.
Source: OECD (2015)
Note: All data are from 2013 or most recent year.


References:

Organisation for Economic Co-operation and Development. (2015). Pensions at a Glance 2015: OECD and G20 Indicators. Paris, France: OECD Publishing. [Full-text at http://j.mp/OECD_Pensions_2015]

World Health Organization. (2014). WHO Mortality Database. Geneva, Switzerland: World Health Organization. [Data at http://apps.who.int/healthinfo/statistics/mortality/whodpms/]

Saturday, September 12, 2015

Life Expectancy and Energy Consumption: Countries and U.S. States - an Update

All of a sudden, I wanted to update my old post with the latest data. So I did using the year 2010 dataBelow, I'm presenting a summary plot first, and then you can find the data table.
In general, as you can easily observe from the figure, longer-living people consume more energy. However, the U.S. states look different. The slope of the trend line is negative in the United States.

Life Expectancy and Energy Use: Countries and U.S. States
(All data are from the year 2010.)


Data table:
Country / StateLife expectancy at birth (years)Energy use (tonnes of oil equivalent per capita)
Hong Kong SAR, China82.984.855
Japan82.844.305
Switzerland82.254.272
Italy82.043.178
Iceland81.9017.354
Australia81.706.962
France81.664.278
Spain81.633.383
Israel81.603.269
Singapore81.5414.084
Sweden81.456.113
Malta81.406.489
Hawaii81.305.065
Minnesota81.058.820
Norway81.009.928
Canada80.899.692
Connecticut80.825.342
California80.775.267
Ireland80.743.464
Netherlands80.706.491
New Zealand80.705.122
Faroe Islands80.645.597
Luxembourg80.6310.016
Austria80.584.681
Korea, South80.555.608
Massachusetts80.525.418
New York80.484.813
Vermont80.456.023
United Kingdom80.403.605
Greece80.393.164
New Hampshire80.325.594
New Jersey80.286.879
Belgium80.236.866
Utah80.206.854
Colorado80.027.535
Germany79.994.328
Wisconsin79.987.913
Washington79.927.610
Finland79.876.223
Rhode Island79.874.561
Nebraska79.8411.819
Iowa79.7112.323
Macao SAR, China79.691.293
Arizona79.645.418
North Dakota79.5517.741
Oregon79.526.426
Idaho79.498.316
South Dakota79.4711.642
Florida79.455.720
Slovenia79.423.914
Cyprus79.312.777
Bermuda79.293.571
Costa Rica79.281.044
Lebanon79.251.667
Maine79.197.812
Taiwan79.185.352
Denmark79.103.786
Chile79.051.987
Portugal79.032.623
Virginia79.017.787
Illinois78.967.761
Maryland78.806.401
Kansas78.7210.256
Cuba78.720.908
United States78.547.942
Pennsylvania78.507.434
Montana78.4910.055
Texas78.4511.894
New Mexico78.438.114
Delaware78.367.056
Wyoming78.3423.940
Alaska78.2922.629
Michigan78.237.031
Puerto Rico78.182.543
Qatar78.1518.623
Guam78.105.682
Nevada78.055.997
Brunei77.999.397
North Carolina77.817.081
Ohio77.758.391
Indiana77.6111.163
Missouri77.548.089
New Caledonia77.474.221
Czech Republic77.423.955
Georgia77.238.039
Albania76.981.067
South Carolina76.958.921
Panama76.952.180
Maldives76.790.929
Mexico76.691.634
Uruguay76.621.586
United Arab Emirates76.6018.121
District of Columbia76.537.761
Croatia76.482.194
Tennessee76.308.946
Bahrain76.2611.793
Poland76.252.653
Oman76.058.040
Kentucky75.9711.441
Arkansas75.969.601
Oklahoma75.8810.584
Bosnia and Herzegovina75.812.200
Louisiana75.7122.604
French Polynesia75.691.676
Argentina75.662.156
Ecuador75.651.014
Estonia75.431.579
Alabama75.4210.256
West Virginia75.409.979
Antigua and Barbuda75.332.956
Vietnam75.310.570
Slovakia75.113.543
Saudi Arabia75.088.148
Mississippi74.9610.029
Aruba74.953.699
China74.891.798
Syria74.871.152
Barbados74.801.703
Libya74.793.867
Macedonia74.721.519
Tunisia74.600.740
Bahamas, The74.593.951
Malaysia74.502.709
Montenegro74.422.061
Saint Lucia74.410.960
Serbia74.342.434
Armenia74.221.111
Turkey74.211.454
Hungary74.212.656
Venezuela74.172.988
Kuwait74.1613.257
Peru73.910.767
Cape Verde73.860.273
Thailand73.811.704
Nicaragua73.800.325
Sri Lanka73.760.291
Georgia73.671.054
Bulgaria73.512.607
Latvia73.481.939
Romania73.461.625
Jordan73.441.269
Colombia73.370.783
Belize73.270.960
Lithuania73.271.831
Seychelles73.204.121
Iran73.133.021
Brazil73.081.475
Mauritius72.971.399
Honduras72.850.418
Jamaica72.851.000
Dominican Republic72.790.742
Palestinian Territories (West Bank and Gaza)72.640.299
Samoa72.410.375
Grenada72.340.927
Saint Vincent and the Grenadines72.180.785
Tonga72.180.602
Paraguay72.031.729
El Salvador71.630.519
Guatemala71.000.396
Vanuatu70.840.182
Greenland70.846.004
Cambodia70.640.107
Algeria70.621.312
Egypt70.451.017
Azerbaijan70.451.561
Belarus70.402.940
Suriname70.342.028
Ukraine70.272.801
Morocco70.170.582
Indonesia70.170.649
Kosovo69.901.484
Trinidad and Tobago69.6019.358
Bangladesh69.490.153
Fiji69.380.674
Kyrgyzstan69.300.940
Korea, North68.900.850
Russia68.865.309
Iraq68.831.298
Moldova68.460.819
Kazakhstan68.303.452
Philippines68.230.307
Kiribati67.880.220
Uzbekistan67.861.781
Nepal67.100.073
Solomon Islands67.070.138
Bhutan67.002.076
Tajikistan67.000.654
Laos66.900.293
Mongolia66.890.792
Bolivia66.320.615
Pakistan66.130.357
Timor-Leste (East Timor)65.940.061
Sao Tome and Principe65.850.275
India65.690.491
Turkmenistan65.025.059
Burma (Myanmar)64.580.114
Madagascar63.350.040
Senegal62.840.187
Yemen62.530.389
Namibia62.480.747
Gabon62.290.812
Rwanda62.210.028
Papua New Guinea62.010.243
Haiti61.870.081
Ethiopia61.470.040
Eritrea61.190.042
Mauritania61.020.219
Ghana60.600.208
Djibouti60.290.567
Comoros60.200.066
Sudan and South Sudan59.730.177
Afghanistan59.600.106
Kenya59.550.138
Liberia59.430.052
Tanzania59.180.069
Benin58.750.205
Gambia, The58.130.097
Uganda57.300.050
Congo (Brazzaville)57.200.445
Niger56.990.031
Togo55.470.138
Guinea55.300.059
Burkina Faso55.010.042
Zambia54.530.260
South Africa54.392.910
Somalia54.020.030
Mali53.770.021
Cameroon53.690.163
Zimbabwe53.590.348
Guinea-Bissau53.560.090
Malawi53.470.050
Burundi52.620.012
Equatorial Guinea51.532.638
Nigeria51.290.126
Angola50.650.422
Chad49.770.009
Côte d'Ivoire (Ivory Coast)49.680.147
Mozambique49.140.208
Congo (Kinshasa)48.990.042
Swaziland48.350.340
Central African Republic48.100.032
Lesotho47.480.199
Botswana46.440.923
Sierra Leone44.840.050


Sources:

Energy Information Administration. (2015). International Energy Statistics. Washington, DC: Energy Information Administration. [Data at http://j.mp/TETPB_Countries]

Energy Information Administration. (2015). State Energy Data System (SEDS): 1960-2013 (Complete). Washington, DC: Energy Information Administration. [Data at http://j.mp/EIA_SEDS]

Lewis, K., & Burd-Sharps, S. (2013). The Measure of America 2013-2014. New York, NY: Measure of America. [Full-text at http://www.measureofamerica.org/measure_of_america2013-2014/]

Ministry of the Interior, R.O.C. (2014). Life Tables for Republic of China. Taipei, Taiwan: Ministry of the Interior, R.O.C. [Data at http://j.mp/Taiwan_LE]

World Bank. (2015). Life expectancy at birth, total (years). Washington, DC: The World Bank. [Data at http://j.mp/WB_LE]